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Group Training Dataset 

% (Total)
Test Dataset

% (Total)

Acceptable 79.7 (9378) 75.1 (2618)

Non-Accept
able 89.6 (5938) 92.0 (4935)

Overall 83.4 (15316) 86.2 (7553)

Group Patient (Train) Volunteer Batch 2 (Train) Volunteer Batch 2 (Test)

1 - Acceptable 7024 2354 2618

2 - Possibly Blurry 340 481 483

3 - Definitely Blurry 643 1413 1416

4 - Possibly Bad 37 939 941

5 - Definitely Bad 328 2578 2578

Total 8372 7765 7553

Our recent results strongly suggest that finding 
tissue site specific classifiers to identify  
transformed tissue (moderate - severe dysplasia 
or worse) will perform better than the global, organ 
specific classifiers developed so far. Following 
these results we are confident that a neural 
network trained upon the features we have 
developed and discussed here will perform better 
in classifying both image stillness and, separately, 
dysplasia and tissue abnormality than the 
histopathological gold standard screening. 
Ultimately, these advances may significantly 
improve the efficacy of screening and biopsy 
procedures.

Figure 4. Ratios of the depth-dependent epithelial backscatter signal for different 
illumination spatial frequencies for the 4 oral tissue types; lateral tongue (LT), ventral 
tongue (VT), dorsal tongue (DT) & buccal mucosa (BM).
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A multivariate analysis of variance was then 
performed for each ratio of DOM backscattering 
signal across all identified still frames. We found 
that the inherent differences between subjects 
contributed the most to variance in the mean 
epithelial backscattering signal. The second most 
significant source of variance was the specific 
tissue site within the oral cavity where the image 
was gathered and finally we found that frames from 
the same video (considered repeat measurements 
of the same tissue) varied the least. We also found 
that the pattern of the ratios was consistent across 
tissue sites (Figure 4) and that the majority of ratios 
for the different sites were statistically different 
(except for Left Right differences in the same tissue 
type; sites 1-2 and 5-6).  

Table 2. Performance of a binary tree in classifying DME fluorescence images. 
‘Non-Acceptable’ includes groups 3,4,5 (group 2 was omitted as reviewer consensus 
was quite poor and could not agree on which groups these images belonged to, in 
addition, the size of the groups was small relative to the datasets).

Early detection and treatment of oral precancers 
can drastically reduce the mortality rate of the 
disease. Previous work has demonstrated the ability 
of depth-dependent epithelial backscattering to 
resolve normal from dysplastic tissue in the oral 
cavity. We have developed an algorithmic approach 
to identifying sub-millimeter motion artifacts in the 
imaging probes field of view, in order to counteract 
a limitation of the imaging system. Further, 
classification thresholds have been identified which 
may lead to improvements in diagnostic sensitivity, 
accuracy and specificity for biopsy site selection, 
cancer screening and tumor margin assessment.

Figure 1. A 
illustration depicting 
the changes in cell 
density and nuclear 
enlargement 
associated with 
epithelial dysplasia 
in the course of it’s 
progression to an 
invasive cancer.

Dysplasia, a stage of pre-cancerous development in 
the epithelium is characterized into grades of 
severity mainly by the epithelial depth and degree to 
which nuclear clustering and enlargement in cell 
nuclei can be observed[1] (Figure 1).

A confocal dual-mode endomicroscopic setup was 
used to obtain synchronous, video-rate 
fluorescence endomicroscopy (FE) and diffuse 
optical microscopy (DOM) images from 6 
anatomical sites (Figure 2) across 25 healthy 
volunteers of whom 12 were Male, 13 Female, 
ranging in age from 21 to 63. Images were also 
captured in 23 patients from the sites of their 
precancerous developments and a contralateral 
normal site.
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Figure 2. A 
diagram 
showing the 6 
sites from 
which DME 
images were 
recorded in 
healthy 
volunteers. L-R 
Buccal Mucosa, 
Lateral Tongue, 
Dorsal and 
Ventral Tongue

Table 1. Breakdown of DME fluorescence images by group membership. The dataset 
was manually annotated, with images sorted into groups, and later removed based 
upon reviewer consensus. In groups 1,3,4 and 5 reviewer consensus was above 
95%.
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Figure 4. Schematic diagram of the DME setup combining FE and DOM to image both superficial 
microstructure and depth-dependent epithelial backscattering. The setup employs two digital 
cameras, a beam splitter and dichroic mirror to achieve separation of fluorescence and 
backscattering whilst the linear polarizer and filters purify signals. 

A suite of features was created to identify motion in the 
DME probe’s imaging field of view including image 
registration and power spectrum analysis features as 
well as texture and shape features from previous work.

We assume that a motionless image is relatively high 
contrast.The proportion of an image’s autocorrelation 
surface above certain threshold values (0.4 shown in 
Figure[5]) were found to be useful metrics for identifying 
motion in the imaging probes field of view, with blurry 
images tending to have a greater area above the 
threshold. This is a result of the striations found in blurry 
images resembling themselves in the direction of the 
probe’s movement.

The contrast-motion assumption is also reflected in 
the power spectrum of its 2D fast fourier transform. An 
exponential decay slope is fit to the power spectrum of 
an image, yielding a quantifiable measure of the 
image’s blurriness (Figure [6]). A steeper slope 
typically indicates more motion, as smaller features on 
the scale of cellular structures cannot be resolved very 
well.

These features are used to classify images between 
acceptably still and unacceptable images. FE and DOM 
image acquisition is synchronous and so identifying 
still FE images means we can create a dataset 
comprised exclusively of still DOM images, 
counteracting the drawback of that modality alone.

Figure 5. Depiction of the features used to characterize the auto-correlative surface of an image, 
generated by applying a 2-D cross correlation of the red boxes in 5.b) and 5.d) to the entire 
image. The red thresholds in 5.a) and 5.c) are the a contour of points with correlation of 0.4. The 
blurry image’s autocorrelation surface has a higher proportion above this threshold.

Figure 6. An illustration of the features extracted from power spectrum analysis of a subset 
of FE images, 6.a) & 6.c). The power spectra are fit to the equation shown in 6.b) & 6.d). 
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